This article was downloaded by:

On: 28 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

³¹P High Resolution Solid State NMR Spectroscopy as a Tool for Structural Studies of Organothiophosporyl Compounds

Marek J. Potrzebowski^a

^a Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Łódź, Poland

To cite this Article Potrzebowski, Marek J.(1999) '31P High Resolution Solid State NMR Spectroscopy as a Tool for Structural Studies of Organothiophosporyl Compounds', Phosphorus, Sulfur, and Silicon and the Related Elements, 147: 1, 339

To link to this Article: DOI: 10.1080/10426509908053649 URL: http://dx.doi.org/10.1080/10426509908053649

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

31P High Resolution Solid State NMRSpectroscopy as a Tool for Structural Studies of Organothiophosporyl Compounds

MAREK J. POTRZEBOWSKI

Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, 90-362 Łódź, Sienkiewicza 112, Poland

Employing 1,6-anhydro-2-O-(tosyl)-4-S-(5,5-dimethyl-2-tioxa-1,3,2-dioxaphosphorinan-2-yl) β -D-glucopyranose I, bis-imidazole 5,5-dimethyl-1,3,2-dioxaphosphorinan-2-tioxa-2-hydroxy complex II and bis (organothiophosphoryl) dichalcogenides III as models this report presents power of 13 C and 31 P CP/MAS experiment in structural studies organothiophosphoryl compounds [1,2,3].

From our studies it is concluded that analysis of ^{13}C and ^{33}P principal elements of chemical shift tensors δ_n and shielding parameters ($\Delta\delta$, Ω , η and κ) can be a source of important information about the nature of "weak" and "strong" hydrogen bonding. A search of the Cambridge Structural Database (CSD) reveals that C-H···S intermolecular contacts are not unusual for thiophosphoryl compounds. We have found more examples of the C-H··S=P contacts than for the analogous C-H··O=P interactions. Formation of C-H···S contacts can be explained in term of hard and soft hydrogen bonds. The S=P as a softer acceptor compared to O=P unit prefers to hydrogen bond with the soft donor C-H. Such explanation is consistent with ideas of Carrol and Bader [4] and the recent results of Braga et al. [5] who surveyed the hydrogen bonding in organometallic crystals. The detailed analysis of the ^{13}P δ_n principal elements of the chemical shift tensor suggests that distinction in values of δ_{33} parameters is due to C-H··S=P interactions.

References

- [1] M.J. Potrzebowski, J. Blaszczyk, M.W Wieczorek, J. Klinowski, J. Phys. Chem A. 101, 8077-8084, (1997).
- [2] M.J. Potrzebowski, M. Michalska, A.E. Koziol, S Kaźmierski, T. Lis, J. Płuskowski, W. Ciesielski. J. Org. Chem.- in press.
- [3] M.J. Potrzebowski, M. Cypryk, M. Michalska, A.E. Koziol, S. Kaźmierski, W. Ciesielski, J. Klinowski. J. Phys. Chem. B.102, 4488–4494, (1998).
- [4] D. Braga, F. Grepioni, K. Biradha, G.R. Desiraju. J. Am. Chem. Soc. 117, 3156. (1995).
- [5] M.T. Carroll, R.F.W. Bader, Mol. Phys. 65, 695, (1988).